
1

Combining
 Data / Object Modeling

with
 State-Transition Modeling

Jim Fulton

Advanced Modeling Interest Group

October 20, 1998

Object Transformation Modeling

October 20, 1998 Object Transformation Modeling 2

ERDs v STDs

♦ Entity-Relationship Diagrams
/ Object Models
define static rules for
◊ Entities
◊ Attributes
◊ Relationships
◊ Inheritance

♦ State Transition Diagrams
/ Petri Nets
 define dynamic rules for
◊ States
◊ Changes of State
◊ Substates

What’s the connection?

2

October 20, 1998 Object Transformation Modeling 3

Typical Example in
State-Transition Diagram Notation

Job Applicant Employee Retiree

Hire Ret i re

October 20, 1998 Object Transformation Modeling 4

Typical Example in
Data Flow Diagram Notation

hire retireEmployeeAppl icant Ret i ree

3

October 20, 1998 Object Transformation Modeling 5

States as Subtypes of “Person”

Person

name

home address

home phone

birth date

age

Job Applicant Employee Retiree

Example as States of “Person”

standard name

work address

work phone

email address

application date retirement date

hire retire

States with Their Own PropertiesAn Object Transformation Diagram

This example
shows objects,

properties,
inheritance and
transformation

More complex
diagrams show
relationships

and composition
as well

October 20, 1998 Object Transformation Modeling 6

States as Object Classes? As Tables?

♦ Object Instances Migrate among Classes!

♦ Not Supported by OO Theory
(Not Excluded Either!)

♦ Not Supported by Relational Theory
(Not Excluded Either!)

♦ Not Supported by OO or Relational Tools
(Requires Intelligent Application of Tools)

4

October 20, 1998 Object Transformation Modeling 7

What Object Transformation Adds to ERDs

♦ Dynamic as well as Static Rules

♦ Explicit Association of Data / Object Types with

Transformation Rules that Specify Code

♦ Validation of Inheritance Hierarchy

October 20, 1998 Object Transformation Modeling 8

What Object Transformation Adds to STDs

♦ Static as well as Dynamic Rules

♦ Explicit Association of Transformation Rules

with Data / Object Types

♦ Inheritance Hierarchy as Basis for Transformation

♦ Object Model as Roadmap to Functionality

5

October 20, 1998 Object Transformation Modeling 9

Benefits of Object Transformation Modeling

♦ Simplified Roadmap to States and Functions
◊ Makes inheritance visible in state specification
◊ Makes states reusable objects
◊ Enables traceability between state-methods and object model

♦ Integrated, Declarative Specification
of both Static and Dynamic Rules
◊ Bases transformations on well-defined objects
◊ Avoids algorithmic control structures in specification

• Case structures specified through subtyping
• Iterations specified through collection objects
• Sequence specified through input dependencies

◊ Simplifies user validation

♦ Potential Code Simplification
◊ Allows control structures in state-specific code to be replaced

by encapsulated, polymorphic methods

October 20, 1998 Object Transformation Modeling 10

Object Transformation Availability

♦ No current support by graphic CASE tools
♦ High level of support in EXPRESS-2 standard

◊ Unclear what support vendors will provide
◊ SDAI offers standard meta-model for details of transformations

to be specified in this way

♦ Existing tools offer hybrid implementation:
◊ Object Models + State-Transition Diagrams (UML)
◊ Entity Relationship Models + Data-Flow Diagrams (LBMS)
◊ Entity Relationship Models + State-Transition Diagrams

(StateMate has good STDs but - at last look - no ERDs)

♦ Requires
◊ Intelligent Planning
◊ Naming and association conventions

